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Abstract—The problem of debonding of a laminated cylindrical shell is considered for the case
where a pair of self-equilibrating line loads act through the center of a pre-existing delamination.
The problem is approached as a moving boundary problem in the calculus of variations, yielding
a set of self-consistent equations governing the intact laminate and governing the debonded segments
of the structure, viewed both as a composite structure and individually, for this class of problems.
In addition to the corresponding boundary and matching conditions, the transversality conditions
which define the location of the variable boundary of a contact zone and of the delamination itself
are similarly obtained. The latter results in the energy release rates which are seen to be a function
of mode II or a combination of mode I and mode II fracture depending upon the presence or
absence of the contact zone. A closed form analytical solution is determined and numerical results
demonstrating characteristic behavior are presented. The system is seen to exhibit relatively complex
behavior for the simple loading considered. General trends of the behavior of the system as a
function of its material parameters, of the bond strength and of delamination size are observed.

1. INTRODUCTION

The problem of delamination growth in layered structures has received much attention,
from the relatively early papers on the subject in the late 1970s and early 1980s, to the
present, with an explosion in related activity in recent years. Yet, to date, most of this
activity has been concerned with flat structural configurations (i.e. beams and plates). As
the present paper is concerned with curved layers, the vast literature on the subject of flat
structures will not be discussed here. Nevertheless, perhaps one of the earliest papers in the
area was that by Kachanov (1976) which concerned itself with debonding in layered
cylinders. In that paper, Kachanov determined bounds for delamination initiation for
pressure loaded cylinders. In his book (Kachanov, 1988) he discussed the related problem
of a partially debonded shell subjected to transverse “tensile” stresses tending to open the
debonded area. This “back of the envelope”™ type calculation was a recasting of results from
a paper published around the time of the one previously mentioned. In his calculation for
a symmetrically situated disbond in an isotropic cylinder, Kachanov estimated the energy
release rates and made conclusions relating to the stability of the process for the system in
question.

In 1988, Bottega considered the problem of debonding of surface layers from a cyl-
indrical substrate for the case of a contracting cylinder (Bottega, 1988a) for which the
response of both inner and outer layers was considered, for the case of peeling of a layer
by a point load acting at the interface of the inner surface of a cylinder and a layer (Bottega,
1988b), and the combined problem of a layer debonding from a contracting cylinder while
subjected to an interfacial load simulating an imperfection or interfacial fiber (Bottega,
1988c). The three studies are summarized in Bottega (1988d). In each of the above studies
results were presented in the form of growth paths in the parameter space of the system. A
contact zone was assumed and growth processes were seen to be a complex combination
of mode II or mixed mode (I and II) fracture involving stretching and sliding in the contact
zone, as well as buckling of the delaminating layer. In each case, regions of stable, unstable
and catastrophic growth were observed and these growth characteristics were seen to be
dependent upon delamination size as well as on the material properties of the layer and on
the strength of the bond. A related study (Bottega, 1990) was concerned with the dynamic
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response of a partially debonded layer at the surface of an oscillating cylinder. Dynamic
buckling of the delaminated segment and its relation to delamination growth were discussed
therein.

In 1989, Chang and Kutlu (1989) considered the problem of a laminated semi-cylinder
shell panel that was subjected to an externally applied and inwardly directed radial point
load over the center of the debonded region. They also considered the same system subjected
to external pressure acting on the outer surface of the structure. Their analysis was per-
formed using FEM and was substantiated by parallel experiments for the case of point
loading. In their analyses, Chang and Kutlu included a region of contact and concluded
that such a region has substantial contributions to the behavior of the system. While most
of their study was concerned with the effect of the presence of delaminations on the global
buckling load of the structure, they also calculated the energy release rates for the case of
pressure loading and concluded, for the situation considered, that growth was stable and
mode 1T dominated.

More recently Larsson and Leckie (1992) have completed an interesting and com-
prehensive study involving composite sheil panels for which the horizontal displacement at
the support was prescribed and directed radially outward. They solved the problem by way
of an asymptotic analysis and used their solution to calculate energy release rates for a
variety of system parameters. They also examined, to some extent, the influence of bending—
stretching coupling, in and out of the delaminated region, and the effect of retention
(omission) of nonlinearities in their analysis. They concluded that, for the system they
considered, the most critical radial location for a disbond was at the center of the laminate,
and that growth was stable under the type of “loading” considered. They also intimated
that inclusion of bending-stretching coupling was less critical in the delaminated region
than in the undamaged portion of the panel.

Another recent investigation is that of Kardomateas and Chung (1992). In their study
they considered the “thin-film” response of a delaminating layer at the outer surface of a
cylindrical substrate, where the cylinder was subjected to external pressure. The analysis
was performed by employing what is effectively a perturbation about the prebuckling
solution in terms of assumed functional forms. Most of the study was concerned with the
determination and comparison of critical buckling loads. Energy release rates were,
however, calculated though neglecting geometric nonlinearities for that portion of the
analysis. Based on this calculation, conclusions were drawn concerning growth of the
disbond. Each of the shell studies discussed above were concerned with delaminations in
plane strain and/or plane stress situations.

Finally, the extensive work of Simitses and his colleagues (Sallam and Simitses, 1987 ;
Simitses and Chen, 1988 ; Chen and Simitses, 1988a, b ; Simitses et al., 1991) concerning
delamination buckling in shells and the influence of the presence of disbonds on the overall
structural behavior must be mentioned here. In this context, the work of Troshin (1983,
1992) must be mentioned here as well. Growth of the delamination was not considered in
the above analyses.

In the present study we shall be concerned with circumferential growth of a “thru”
delamination situated at the interface between two thin cylinders (plane strain) or rings
(plane stress) which are bonded together. In particular, we shall be concerned with the
response of the system when it is subjected to radially directed self-equilibrating interfacial
line loads acting at the center of the delamination. The geometrically nonlinear shell theory
employed as the mathematical model for the two subcylinders is the same as that used in
Bottega (1988a—d). The material properties of each individual subcylinder are not con-
sidered to vary through its thickness. The intact portion of the structure (i.e. the composite
structure) will be found as a laminate of the two subcylinders, incorporating bending—
stretching coupling. In the spirit of Bottega and Maewal (1983a—c) and Bottega (1983,
1988a-d, 1990, 1991, 1993), the problem will be approached as a moving boundary problem
in the calculus of variations, with the boundary of the delaminated region, as well as that
of a contact zone, being found as part of the solution. A Griffith type fracture criterion will
also be incorporated. In this manner, the governing equations and the corresponding
boundary, matching and transversality conditions will be derived and a self consistent
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laminate theory will be obtained for the intact portion of the structure, for problems of this
class. A closed form analytical solution will then be obtained for the case of self-equilibrating
line loads. Finally, results corresponding to numerical simulations are presented, revealing
characteristic behavior of the delaminating structure. It will be seen that such behavior will
include lifting (separation), sliding and snap-through buckling of the subcylinders along
with stable, unstable and catastrophic growth of the delamination. Regions in which the
various types of growth occur will be identified in the parameter space of the system.

2. PROBLEM FORMULATION

Consider a laminated cylinder possessing a “‘thru” delamination over a portion of its
circumferential interface and let the system be subjected to self-equilibrating radially
directed line loads of intensity Q, acting through the center of the debonded region as
shown in Fig. 1. From the type of loading considered, and from previous work involving
thin cylindrical films (Bottega, 1988a—d), it may be anticipated that the inner and outer
delaminated segments separate from one another and that a region of contact may exist
where the debonded segments maintain sliding contact while “pushing” on one another. It
will be assumed that delaminated segments possess smooth surfaces. With this picture in
mind, the system may be parameterized by an angular coordinate, 6, measured positive
clockwise from the center of the disbond. From symmetry considerations, only the portion
of the cylinder defined on 0 < 6 < n will be considered. The system will thus be partitioned
into three regions separated by the intermediate boundary angles ¢ and ¢*, the latter
defining the boundary of the disbond. The first of these regions will be referred to as the
“lift zone™ or the “‘separation zone”, and is defined on the domain S, : 8 €0, ¢]. Asits name
suggests, this is the region where the delaminated segments lift away or separate from one

Fig. 1. Laminated cylindrical shell with delamination showing lift zone/contact zone boundary ¢,
delamination boundary ¢*, and self-equilibrating line load of intensity Q, (inset).
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another. The second region will be referred to as the ‘“‘contact zone” and refers to the
region where the debonded segments maintain sliding contact. It is defined on the domain
S,:0€[¢, ¢*]. The third region, defined on the domain S;: 6 € [¢*, =], will be referred to as
the “bond zone” and corresponds to the region where the composite cylinder remains intact
or bonded. In the ensuing analysis, the undeformed interface at which the delamination
occurs will be taken as the reference surface. The structure will thus be further subdivided
into two sublaminates bounded by the reference surface. The inner cylinder will be referred
to as sublaminate/cylinder **a™, while the outer cylinder will be referred to as sublaminate/
cylinder “b”. In what follows, all length scales are normalized with respect to the initial
radius of the reference surface. In this context we define the normalized thicknesses of the
inner and outer cylinders as &, and h,, respectively, and define the thickness of the composite
cylinder as h* = h,+hy, « 1.

Let us next define the normalized circumferential displacement u,(0) « | (positive
clockwise) and radial displacement w,(8) « 1 (positive inward) of a material particle at the
centerline of sublaminate » (+ = a, b) in region i (i = 1-3). For the mathematical model
employed, the corresponding curvature change, x,{(f/), and membrane strain, ¢,(f), are
expressed in terms of the centerline displacements as

K, = wy,r,i_*— Wi and € = Ll;.,‘— W’r'i+ "llu/zis (law b)
where f7(0) = df/d0 etc. We also define the corresponding membrane forces
N(0) = —Ce () (r=ab;i=1-3), (1c)

where C, is the normalized membrane stiffness of cylinder r. The specific normalization of
material and load parameters is discussed in Section 3. Furthermore, the circumferential
displacements at the interface between cylinders a and b, u (r = a, b), are related to those
at the sublaminate centerline, u,;, by

* — Ly * _ 1 ’
Ul = upi— Wi U = Uyt Wiy (2a,b)

The membrane strain in each sublaminate at the interface is similarly related to that at the
corresponding centerline by

€ai = ();ki_ %hak‘af* €y = et’f,‘f‘ T_l’hb’\‘bi (l = ], 2a 3) (3'(1, b)
where ¢,; (r = a,b) corresponds to the membrane strain at the centerline and e} to the
membrane strain in sublaminate r region / at the interface between the inner and outer
sublaminates.

We next formulate an energy functional, I1, as follows;

m=y {z UV’+A,}—W+F @)

i=1 Ur=a

where

U =1p, J kidf+ !C, J e2df (r=a,b;i=123) (5a)
S s,

Rl

is the strain energy of sublaminate r in region i, D, is the normalized bending stiffness of
cylinder r, and the membrane strain e,(0) is expressed in terms of the strain at the sub-
laminate interface and the curvature change using egns (3a, b). The quantity A, corresponds
to a constraint functional associated with region i and is given by,
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A= J Al Wo; — Wai) d9+f i —u) do, (5b)
s, s,

W = Q4[w. (0) —wy, (0)] (5¢)

represents the work done by the applied loading and

I' = 2y(¢* - o) (5d)

is the delamination energy. In the above expressions, 4, and y; (i = 1-3) are Lagrange
multipliers with

Ay=0 and pu,=u,=0, (6a,b,c)

while y is the normalized surface energy of the bond and ¢ represents an initial delamination
size.

We derive the governing differential equations, boundary and matching conditions and
transversality conditions upon invoking the principle of stationary potential energy. We
thus require that

811 =0, @)

where 6 corresponds to the variational operator.

Substituting eqns (1)—(6) into eqn (7), performing the proper variations and allowing
for the variable boundaries at ¢ and ¢*, yields the governing equations, boundary
conditions, matching conditions, constraint conditions and transversality conditions for the
individual segments of the subcylinders a and b. Eliminating the Lagrange multipliers and
employing the associated constraint conditions results in the governing equations and the
boundary, matching and transversality conditions expressed in terms of the properties of
the corresponding “composite structure” for 8€ S, and #€S;, along with those for the
individual subcylinder segments for 8 .S,. Thus we have

<DaKal + ENal) + (DaKaI + 5Nal>+ (Naiw;l)/",'Nal = O (BESI) (Sa)
hb 1/ hb L
Dyry — ?Nbl + 1 Dy — ?Nbl +(Npwp)) + Ny =0 (0eS) (8b)

MP +M*+(N*w¥)'+ N*=0 (6eS;i=23) (8)

Ni;=0, Ny,=0 (0eS;i=12) (%a,b)
and
¥=0 (0eS,) (9c)
where :
w¥(0) = wu(0) = wy(0) (BeS;;i=2,3), (10a)
k*¥(0) = k., (0) = 6,(8) (BeS;;i=2,3), (10b)

uf(0) = u5(0) = ufi(6) (0€S)), (10c)
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N¥ = No+ Ny, (11a)
M#% = D¥+m*, (11b)

. n, hy
m® = ENaz— ‘i‘NbZ 5 (llc)
M#%* = A*k¥ + B*e¥ = D¥k¥ — p*N¥, (12a)
N¥ = N+ Ny = —(C*et + B*«Y), (12b)
A* = Do+ (h,/2)*Co+ (h/2)*Cy, (13a)
B* = #,C,—3,C,, (13b)
C*=C,+ Gy, (13¢c)
D* = A*—p*B* = D+ (h*/2)*C,, (13d)
p* = B*/C*, (13¢)
D,=D,+D,, (13f)

and

C, = C,C,/C*. (13g)

The quantities 4*, B* and C* may be recognized as the stiffnesses of the intact composite
cylinder and conform to those obtained by conventional methods. The corresponding
boundary and matching conditions are then given by

1 (0) = wy(0) =0, [D,ky+Naywilo—o = Qos (14a,b,c)
up (0) = wy, (0) = 0, [Dykgi+Noywiilo_o = —Qo, (14d,¢,f)
ufi(@) = ub(d),  ufi(d) = ubh(e), (15a,b)
Nal((b) = Na2(¢))’ Nb|(¢) = sz(d’), (15¢,d)
Wai(@) = wui (@) = wi(9), (15¢, 1)
wa(@) = wi(@) = wi'(9), (15g.h)
h, hy .
[DaKaI + B Nal:| + [Dbk'bl - ENM:I = [DorF +m*]g_, (151)
0=¢ o=¢

h, ] L hy , , , ,

[Dax;]+ N::I+Na1wal:| + l:Dbel_ *Nél‘*Nlebl] = [Dok¥ +m* + N¥w'lo_y,
2 0=¢ 2 0o

(159
uh (%) = ub(9*) = uF (™),  N¥(9*) = N¥(9%), (16a,b,c)
wi(9*) = wi(o*), wi'(9*) = w¥'(9*), (16d,e)
M3 (¢*) = M¥(¢*), [M¥ +NIwdlo g = MY +NIWF ]y, (16f, g)
wf(m) = w¥ () =0, [M¥F+NIw}]lep,=0. (17a,b,¢)

In addition, the transversality conditions found as a result of the variable boundaries at
6 = ¢ and 8 = ¢* take the form of
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Kai(@) = Koi(¢) = k1 (¢), (18)

which defines ‘the equilibrium configurations of the propagating boundary between the
contact zone and the zone of separation, and

1 1 1
*¥, — | = *2 , _~ Ar2 R V7
G.{¢*} = [ZDOKZ + 5C, NI+ 3¢, Nb:|5=¢'

1 1
| Z D*pek2 %2 =2 < ¢p*~ 1
|:2D K3+ 2C*N3 ]G:d)* y (@<¢*7), (192)

1 1 1 1
*Y — | © 2 - 2 2 2
Gb{¢ } = [2D3Ka| =+ 2Dbe1 + _"zca Na + ﬁzcb Nb:L=¢‘

1 1
_| 2 pE,x2 %2 = — hH*
[20 K+ 5o VY L 2(6 = $%), (19)

which define the equilibrium configurations of the propagating boundary of the delami-
nation. The quantities G, and G, may be identified as the energy release rates at the
delamination edge.

The transversality conditions which define the boundary 6 = ¢* suggest the following
growth criterion : if for an initial delamination boundary ¢* = ¢,

G ot <y (@ <o*7),
Go{df} <2y (¢ =¢"),

no growth occurs and ¢* remains at its initial value ; if for an initial delamination boundary

o* = ¢f,

G o3} >2y (@<9*),
Gu{oF} >2y (¢ =97,

growth occurs, with the system evolving such that the equality (19) is satisfied. The energy
release G, is seen to correspond to mode II fracture, while the energy release G, is seen to
correspond to a combination of mode I and mode II fracture. The growth criterion following
eqns (19a, b) is interpreted accordingly.

The problem of interest is fully defined at this point. It can, however, be put into a
more convenient form by recasting it into a mixed formulation expressed in terms of the
radial displacements and the membrane forces. Upon integrating eqns (9a—), noting egn
(11a) and imposing the matching conditions [eqns (15c,d) and eqn (16¢)], we find that

N,, = N,, = N,; = constant, (20a)
Ny = Ny, = Ny = constant, (20b)
N¥ = N¥ = N* = constant (= N+ Ny). (20¢c)

Substitution of eqns (20a—c) into eqn (11c) yields
m* = m,+m, = constant, (20d)

where
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m, = Nyoh,/2 and my = — Nyhy/2. (2la,b)

On incorporating eqns (20a—c) into eqns (8a-d), the governing differential equations take
the forms

Liw,.: Noo/D,} +(m,/D,) =0 (r=a.b), (224, b)
L{wE; N*[Do} +(m*/D) = 0 (220)
and
L{w}; N*/D*} — (p*N*/D*) = 0, (22d)
where
L{w;N} = %g}’ +(24N) ig? W+ N, (23)

The quantities m,, m,, m* and p*N* are seen to be the moments of the membrane forces
of the respective cylindrical segments, taken about the reference surface.

Upon substituting eqns (20a, b} into eqn (1c¢), eqn (20c) into eqn (12b), integrating
over the corresponding domain and applying the boundary conditions of eqns (14a,d)
and (15a,b) for e S,+ S, and egqns {16a,b) with eqn (17a) for 6e5,, we obtain the
circumferential displacements of the corresponding cylindrical segments at 8 = ¢* in terms
of the radial displacements and the membrane forces. Thus,

*

NE{} h’d 7 ¢ 1.,.72 i 2
ST N+ | a—beDdot | G- leEde, e)
a 0 &

il

up(¢*) = U¥

(e

N, h ¢
ub(¢*) = Ut = — -2 d*— Dwh (9% + L (whl—%w{,%)dOJrJ (wr—Iw¥?de  (24b)

Ch 2 ¢
and
N* " .
ut(¢p*) = U = O (r—¢*)—p*n¥'(¢*)— L {(I=p*wt—w¥ 1 do.  (240)

Each of the above expressions (24a—c) may be equated by virtue of the matching conditions
(16a,b). Doing so results in a pair of “integrability conditions” in terms of the radial
displacements and the membrane forces, the load intensity @, and the boundary angles ¢
and ¢* of the form

Li{wa, wor, wE, W i NNy, N*; Qo3 0, 0% =0 (j=1,2) (25)
where, for example,
L=L=UfU¥=0 (252)
and
L=1=Ut~Ut=0. (25b)

This explicitly eliminates the circumferential displacements from the formulation.

The differential eqns (22a-d) together with the integrability conditions, the trans-
versality conditions and the remaining boundary and matching conditions, recast the
mathematical problem from a displacement formulation (expressed in terms of both the
radial displacements and the circumferential displacements) to a mixed formulation (ex-
pressed in terms of the radial displacements and the membrane forces).
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3. ANALYTICAL SOLUTION
We next present a solution to the problem in hand posed in the mixed formulation

given at the end of the previous section. In all that follows, the normalized sublaminate
stiffnesses are given by

(j.d = 12/}1:, Da = 1, Cb = Ca/tho, Db = I/E(]h(:;, (26a*d)
where
Ea/(l—vzg)
ho=h,/hy,, Ey=—=——>- or E,=E,[/E 26e, f
o= bl Ey= g or Eo= B, (26e. )

and E, and v, (r = a,b) correspond to Young’s modulus and Poisson’s ratio of the inner
and outer sublaminates, respectively. In a similar fashion, the normalized load intensity Q,
is related to its dimensional counterpart Q and the normalized bond energy y is related to
its dimensional counterpart 7 by y = 7R*/D and Q, = QR? D, respectively, where R is the
initial radius of the reference surface and D is the dimensional bending stiffness of the inner
sublaminate.

Before proceeding formally we first note, upon consideration of a free body diagram
of a portion of the composite structure, that for the loading type considered, the total
membrane force N* vanishes throughout the structure. Further consideration shows that
the total shear on any cross section vanishes as well, while the total internal moment is, at
most, uniform. That is to say that the internal moment of the composite structure does not
vary with 6. Consideration of eqn (8¢) indicates that for N* = 0, the only admissible
uniform moments for the present model of the composite cylinder are those that vanish.

It is thus seen, from eqns (12a,b) that x¥ = e¢¥ = 0 and hence that the laminated
segment is undeformed (i.e. for the present laminate model, the portion of the structure on
[¢, ¢*] is impervious to the “stress” distribution, the resultant of which vanishes, imposed
on it at 0 = ¢* and hence responds rigidly). It is further seen from eqn (11b), that the
curvature of the composite structure, and hence of the sublaminates as well, is uniform
throughout the contact zone.

From the above discussion we may deduce the following ;

N*=0 hence Ny= —N,=—N, (feS,+S,), (27a)
K¥(0) = —kog= —m*/Dy= —Nh*2D, (0€S,) (27b)

and
N*=uf(@) =w¥@) =0 (BeSy (28a,b,¢)

where for definiteness, we have restricted the system from rigid body translation by intro-
ducing, say, a knife edge at the base of the system. The relationship (27a) now replaces one
of the integrability conditions, say eqn (25b), as Ny, is now known in terms of N,, explicitly.
The differential eqns (22a—c), together with the corresponding boundary and matching
conditions, then lead to the following solutions for the radial deflections of the individual
shell segments for € .S, + S,, as functions of the load intensity O, the membrane force N,,
the lift zone/contact zone boundary angle ¢ and the delamination boundary angle ¢*;

wa!(g) = {Q0q3+pa} Ccos oc9- {QOUa+ ta} Cos 0/(1-—Q0Fa(0; tX) —NO(I +ha/2)a (293.)
wy (0) = {Q*CIb'i’Pb}f(H;Po)‘{Q*Ub+tb}g(9;Po)—Q*Fbw;Po)"‘Po(l“hb/z), (29b)
wi(0) = —koF*(0;¢%) (29¢)
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where the functions F, and F* are given by
F(0;a) = &—4(’—‘_7 (sin o — o* sin 0/a) (30)
and
F*(0;¢*) = 1 —cos ¢* cos @ —sin ¢p*sin g (€28)
and the parameter « is related to the normalized membrane force Ny, by

22 = YINo+2+4/No(No+4)] > 1 or Ny= (a>—1)Ya’. (32)

In addition, the functions that describe the deflection of the outer shell for 8¢S, are
dependent upon the parameters

Py = No/Dy, and Q*=Q,/D, (33a,b)
and are given by
f(6;P,) = coshéBcosnb, (34a)
g(8; P,) = sinh £6siny0, (34b)
Fy(0: Py) = de [M -2 "9] (34¢)
" ¢
where
n=cosy, ¢&=siny, (35a,b)
y=2tan"' {WM} (Po #2), (36a)
2—P,
x="/4 (Po=2), (36b)
or by
(il) Py > 4;
f(0; Po) = cosh 6, (37a)
g(8; Pg) = cosh /B, (37b)
F,(0;Py) = % (sinh 6 — B*sinh 6/p), (37¢)

where the parameter f is related to the membrane force parameter P, by

B = HPo—2+/Po(Py—4)]. (3%)

The coefficients appearing in eqn (29a) are given by
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4s = (0, ¢) = [F{” sin ¢/a+ F{" acos p/a]/ X, (39a)
Pa = P, ¢, ¢*) = [P*sin ¢/a—xF*V acos p/a]/X,, (39b)
v, = v(a, @) = [F¥ asinag + FV cos agla/X, (39¢)
and

t, = t(a, ¢, p*) = [P* asinag — k F* 1V cos adla/X,, (394d)

where
X, = X, (2, ) = cosa¢ sin ¢p/a— o’ sin o cos ¢/a, (40a)
P* = P*(0, ¢, ¢*) = No(1+hy/2) —1coF*©, (40b)

and we have introduced the notation

darf
n = 7
=40 b (4D

for any function f(0).
The coefficients appearing in eqn (29b) are similarly given by

@y = qo(Po, ) = [FVg"" — F{"g'9]/X,, (422)
Po = Po(Po, &, 9%) = [xo(wog“)—w,g(o)) _P*g(l)]/Xb, (42b)
vy = 0p(Po, §) = [ROf V=) 1, (42c)

and
ty = t(Po, §, $*) = [ko(@o [’ — w0, f0)— P* )] Y, (42d)

where

Xb = Xb(PO’ ¢) = g(O)f‘“)_g(l).f(O)’ (433)
Yy = Yu(Po, §) = [PV —f1g'?, (43b)
Wy = WP, d*) = cos¢*cos P +sin p*sinp—1 (43c)

and
W, = w,(¢p, d*) = sin ¢* cos ¢ —cos ¢* sin ¢. (43d)

Substitution of the above solutions for the radial deflections (29a,c¢) along with eqn (28)
into the integrability condition (25a) transforms that condition into a nonlinear algebraic
equation which defines the membrane forces associated with equilibrium configurations of
the evolving system. We thus have

i e
{Qog.+1.} Sm:(p —{Qov.+ t} asin p/a+ Qo [COS “¢a4°‘_ ;:OS d)/a]
2
B % {% {Qoga+pa}°[Q)—sin Q)] + <{Q()l)2+ta}[ﬂz—sin Q)]



1902 W. J. BOTTEGA

~{Quga 4P} {Qova+ 1.} ¢ [S“Jj'l”‘ _ :9”]
2t sinQ, sinQ, _siny, siny,
+ 03 iy [1+ o+ e~ e - }

2’¢ [sm ap cosy, cosy, ,_g‘j? :I
+QO{Q0qa+pd} _1 ad) + l//z + |//l (0(4—1)¢

_sin2¢/a cosy, cosy; 2 :l}
4—1[ blr U ¥ =D

—No{od(1+h,/2) +¢*/C,} —Kko{d* — p+cos p* sin ¢ —sin p* cos ¢}

+ QO{QOUa

2
- % {(¢*— P) + (sin’ p* —cos’ p*)(cos ¢* sin ¢* —cos ¢ sin ¢)

—2cos ¢*sin ¢* (sin’ ¢* —sin? )} = 0 (44)
where
Q, =2up, Q,=2¢ua, (45a, b)
ar—1 241
V=~ ¢ and y,= L{ o. (@5¢, d)

Substitution of eqns (29a, ¢) into eqn (18) transforms the transversality condition at the lift
zone/contact zone boundary to the form

{koF*P —p,a’cosag+1,c08 pja} — Qo{q.a’ cosagp —v,cos pja+FP} = 0(¢p < ¢* ).
(46)

Substitution of the solutions (27a) and (28a,c) together with the solution (29¢) into the
transversality condition at the delamination boundary (19a) while incorporating the
matching condition (16f), reduces the growth equation to the form

G {d*} = Gu=5-m**+ ”lfNa =2y (p<o*). (472)

Similar substitutions incorporating the solutions (27a), (28a, ¢) and (29a), while accounting
for the moment balance at the delamination edge for the case where the lift zone completely
envelops the contact zone, renders the transversality condition (19b) to the equivalent form

{—Kk*—p,a*cos ad*+1t,co8 p*/a} — Q{g.,a’ cosad* — v, cos p*ja+ FP} = 0(¢p = ¢*)
(47b)
where

K* = K (P*) = —Ko+/2Qy—Gy). (48)

In eqn (48), the positive root is taken so as to render the curvature difference
[K.1 —Kbilo=4+ = 0 and thus correspond to a physically realizable state of the system. The
limiting case, k* = — Kk, corresponds to the situation where the lift zone just traverses the
entire delamination (i.e. when ¢ = ¢*~). In such a situation the conditions (46) and (47a)
are satisfied as well.

Equation (44) together with eqns (46) and (47a) or together with eqn (47b) constitute
two systems of coupled nonlinear algebraic equations, one for ¢ < ¢*~ and the other for
¢ = ¢*, in terms of the membrane force N,, the lift zone/contact zone boundary angle ¢,
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the delamination boundary angle ¢* and the load intensity Q,. Quadruples { Ny, ¢, ¢*, O}
which satisfy the system of algebraic equations correspond to equilibrium configurations
of the delaminating structure.

1t is seen that, as a result of the rigid body response of the intact composite structure
(6 e [¢*, w]), only the solution of the inner (outer) cylinder for 6& [0, ¢] [eqn (29a or b)],
along with that of the composite cylinder for 8 € [¢, ¢*] [eqn (29¢)], is explicitly needed to
evaluate the propagation characteristics of the boundaries 8 = ¢ and 8 = ¢* given the
material properties of both the inner and outer sublaminates and of the bond. Such
characteristics of the evolving structure are examined in the next section.

4. NUMERICAL RESULTS AND DISCUSSION

In the present section we shall examine the characteristics of the evolving structure by
considering variations of a specific system. As is indicated by the theory and analysis
presented to this point, the phenomenon of delamination growth, in the present context, is
dependent upon the relative stiffnesses of the two sublaminates, as well as on the bond
strength, for a given loading program. As seen by equations (26a-f), the relative stiffnesses
are dependent upon the ratio of the material parameters (Young’s modulus, Poisson’s ratio)
of the pair of subcylinders and on their relative thicknesses. For the purposes of comparison,
we shall vary the material ratio £, for a structure whose inner and outer sublaminates are
of equal thickness. This will be done for the specific system whose normalized sublaminate
thicknesses are i, = i, = 0.002449.

As discussed previously, growth of the delamination may occur when the debonded
region possesses a contact zone or when the lift zone traverses the entire delamination. For
the former, the lift zone/contact zone boundary propagates (recedes) as well. We shall
consider the case of nonvanishing contact zone first.

When ¢ < ¢*~, substitution of eqn (46) into eqn (44) eliminates the load parameter
Q, resulting in a nonlinear algebraic equation in « (¥,), ¢ and ¢*. Thus for a given
delamination size ¢*, the resulting equation may be solved numerically to obtain values of
the membrane force parameter a, for selected values of the lift zone/contact zone boundary
angle ¢. This is done numerically via the bisection technique. The resulting roots may then
be substituted into eqns (46) and (47a) to obtain the corresponding values of the load
intensity Q, and the energy release rate G,, respectively. Selected results are displayed in
Figs 24 in the form of plots of O, vs G,.

Fig. 2. Energy release rate vs load intensity for various delamination sizes, for the case of finite
contact zone with E;=1.0; (@) ¢*=0.15 (b) ¢*=0.17, (c) ¢* =020, (d) ¢*=0.30.
(h, = h, = 0.002449).
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Fig. 3. Comparison of energy release rate vs load intensity for ¢* = 0.20 for various values
of moduli ratios for the case of finite contact zone; (a) E, = 10.0, (b) E,= 1.0, (¢) E, = 0.10.
(h, = hy, = 0.002449).

The behavior of a selected set of delaminations with nonvanishing contact zone is
illustrated in Fig. 2 for the case where E, = 1, while the effect of variation of the modulus
ratio and hence of the relative stiffnesses of the subcylinders is demonstrated in Fig. 3 for
a delamination size of ¢* = 0.2. Upon examination of Fig. 2, it may first be noted that the
overall relative features of the corresponding curves resemble those of the (inner) thin film
case (Bottega, 1988b) in a qualitative sense. For each curve, corresponding to a different
delamination length, the energy release rate increases monotonically with increasing load
intensity until a maximum value of Q= Q. is achieved. This load corresponds to the
critical load at which snap-through buckling occurs. As we proceed around the remainder
of the curve, the energy release rate further increases before decreasing, with decreasing
load intensity. For each of these paths, the lift zone/bond zone boundary angle first decreases
then increases, as each of the curves is traversed in a counter-clockwise manner. The curves
terminate at the point where ¢ = ¢*. Thus, for @, — 0* an initial value of ¢ is achieved.

*T
Eg=10.0

Fig. 4. Energy release rate vs load intensity for E, = 10.0 for the case of finite contact zone;
(@) ¢* = 0.17, (b) ¢* = 0.20. (h, = h, = 0.002449).



On circumferential splitting of a laminated cylindrical shell 1905

Further, solutions for non-vanishing contact zone cease to exist for delamination sizes
below a certain value, that is, roots could not be found for these cases. In this particular case
(E, = 1) the minimum delamination size with non-vanishing contact zone is approximately

* ~ 0.14~. This characteristic is consistent with what was observed for the thin film case
(Bottega, 1988b) but occurs at slightly larger values of the minimum delamination angle
(0.14 for E, = 1.0 and 0.17 for E, = 10.0, compared with 0.10 for the thin film case) due
to the added flexibility of the present system. A reason for this minimum value is that as
¢* - O(h™), the “arch” tends to a flat layer and the behavior then acts in kind (i.e. no
contact zone) under load. This also suggests a rationale for the finite value of the lift zone
boundary ¢ for @, — 0*. Alternatively, for a large enough disbond, the initial deformation
of the sublaminates is primarily membrane in nature upon application of the load, hence
the initial separation angle (non-vanishing ¢). Such behavior is demonstrated for the case
of concentric rings (Bottega, 1993). Further increases in load result in a combination of
bending of the composite structure in the contact zone and bending of the individual
segments in the separation zone, in addition to stretching (compressing) of the segments,
such that ¢ first decreases and then increases. It may be noted that the curves in Fig. 2
become closer to one another (i.e. more densely packed) as ¢* increases, and that the curves
intersect one another at a single point for each pair. If we consider some initial delamination
size, the corresponding curve would be traversed (for @, < Q) until G, = 2y at which
point growth will occur. When growth does occur, the figure indicates that increments in
the load will cause incremental increases in the delamination size. Such stable growth will
continue to occur (with increasing “rate”) as the load is increased, until a path corresponding
to a delamination size is encountered such that the maximum load of that path is intercepted
for the given value of the critical energy release rate. If y is large enough, such a point will
be achieved without growth. At this point snap-through occurs and ¢ - ¢*. Growth is then
governed by eqn (47b) and is discussed later in this section. It may be pointed out that
although points of intersection occur between paths of different size delaminations, the
states associated with the larger disbonds are not directly achievable from those of the
smaller at constant Q,. This may be seen if one observes, for example, the paths shown in
Fig. 2 for Q, &~ 37. From the variation in energy levels as a function of delamination size
one can infer that a relative minimum in the energy release rate occurs between ¢* = 0.17
and ¢* = 0.20, and thus that an “energy barrier” exists between these two disbond sizes at
this load level.{

It is seen from Fig. 3 that, as the modulus ratio is increased (for fixed values of the
stiffness parameters of the inner cylinder), the energy release rate increases accordingly
while the corresponding maximum load decreases as the overall structure becomes more
compliant in the context of the type of loading considered. The corresponding curve for
the thin film case (£, — 0; Bottega, 1988b) differs slightly from the case for E, = 0.1 shown.
It is also interesting to note that for the case where E, = 10.0, the minimum delamination
size at which a contact zone is found is ¢* & 0.17. For ¢* = 0.17, the initial and terminating
lift zone boundary is at ¢ = ¢* = 0.17 (Fig. 4). Thus, such a state may not, in general, be
achievable from initial loading but may be approached after growth of a smaller disbond
with vanishing contact zone. Alternatively, the layers may separate throughout the
debonded region upon initial loading and first come into contact when Qo = 35. If the
initial delamination size is smaller than the minimum required for a contact zone to
exist, or if ¢ < ¢* and snap-through buckling occurs with ¢ — ¢* as discussed, growth is
governed by eqn (47b). Eliminating O, from eqns (47b) and (44) results in a single nonlinear
algebraic equation which may be solved numerically for given ¢*, as for the previous case,
to yield values of N, corresponding to equilibrium configurations of the delaminating
structure. These values may then be substituted into eqn (47b) to yield the corresponding

t1t should be pointed out here that the opposite was stated for the analogous problem with a rigid outer
cylinder [Bottega (1988b) and the corresponding paragraph in the review, Bottega (1988d)] where the intersection
points for paths corresponding to ¢ < ¢* were said to indicate unstable growth. We take this opportunity to
correct that statement and thus to indicate that the scenario for ¢ < ¢* for the analogous rigid substrate problem
should parallel the discussion for the more general case considered herein.
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120 1

y=1

Fig. 5. Delamination growth paths for the case of vanishing contact zone with y = 1.0 for various
moduli ratios; (a) E, = 0.10, (b) E, = 1.0, (¢} E, = 10.0. (h, = h, = 0.002449).

values of Q,. The delamination growth paths for E, = 0.1, 1.0 and 10.0, are displayed in
Figs 5 and 6 for bond strengths of y = 1.0 and y = 10.0, respectively.

Upon observation of Figs 5 and 6 it is seen that each path, in general, possesses an
“unstable well” and that this well deepens and widens with increasing modulus ratio and
decreasing bond strength. It is also observed that two critical points, ¢% and ¢, exist
corresponding to the peak at the right hand boundary of the well and its projection onto
the left hand boundary of the well, respectively (see Fig. 7). When growth occurs for
delaminations whose initial size is ¢f < ¢F or ¢ > ¢¥% for the system in question, it is
unstable and catastrophic within the context of the present model. A second critical point,
¥, exists corresponding to the bottom most point of each well (see Fig. 7). When growth
occurs for disbonds whose sizes are bounded by the critical points for catastrophic growth
and lie to the left of the bottom of the well, i.e. when ¢¥ < ¢F < ¢¥, growth is unstable.
When growth occurs for disbonds whose sizes are bounded by the critical points for

120 1

100

40

Fig. 6. Delamination growth paths for the case of vanishing contact zone with y = 10.0 for various
moduli ratios; (a) E, = 0.10, (b) £, = 1.0, (c) E, = 10.0. (h, = h, = 0.002449).
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Fig. 7. Generic delamination growth path for the case of vanishing contact zone, showing critical

delamination sizes ¢¥, ¢* and ¢%, separating regions of stable, unstable and catastrophic growth
(representative scenarios are depicted).

catastrophic growth and lie to the right of the bottom of the well, i.e. when ¢F < ¢f < 95,
growth is stable. For the case where E, = 10.0 and y = 1.0, the ascending portion of the
well is actually of a very narrow “S” shape, not seen within the resolution of the figure.
Such a shape indicates minor closure at this point or, if one does not allow closure, arrest
until the peak is encountered. In any case, the ascending (right hand) portion of each well
indicates stable growth for all other cases considered. For the case of a very weak bond,
y = 0.1 (not shown), the growth paths for vanishing contact zone terminate after they
encounter the stable (right hand) portion of the wells for the range of values considered.
At these points G}, — 2y and thus x* — k. These points correspond to the limiting case of
vanishing/nonvanishing contact zone, where the lift zone just traverses the delamination.
Such results indicate that for situations in which this occurs, the propagating delamination
develops contact zones for delaminations which grow beyond these limiting sizes and is
reminiscent of the behavior observed for a thin layer debonding from a contracting cylinder
(Bottega, 1988a,c). This behavior suggests how a delamination which possesses a non-
vanishing contact zone but does not possess equilibrium configurations which are achievable
by loading from the undeformed state, such as that represented by the curve shown in Fig,
4 corresponding to ¢* = 0.17 (and discussed earlier), may be encountered.

For a disbond whose initial size is such that no contact zone exists, a typical scenario
would be the following; as the applied load intensity Q, is increased from zero, the
sublaminates separate from one another with no growth occurring until the growth path
for the given system is encountered. Once sufficient strain energy is achieved, growth begins
with the characteristics of growth depending upon the initial size of the delamination. If
OF < ¢ or ¢pF > ¢%, growth is catastrophic. If 9% < ¢F < ¢F, the disbond will grow in
an unstable fashion at constant load until the corresponding point on the right hand portion
of the well is achieved. Further increases in load cause the delamination to grow in a stable
manner following the ascending portion of the well, until the peak is reached. At this point
catastrophic growth ensues. If ¢F < ¢ < ¢%, growth of the disbond is stable followed by
catastrophic. For the case of a very weak bond, as discussed earlier, a contact zone may
develop after the stable portion of the growth path is encountered.

For a disbond which possesses a contact zone initially, a possible scenario would be
as follows ; as the load intensity is increased from zero, the corresponding path for that size

SAS 31:14-D
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disbond is followed (Figs 2 and 3), with the contact zone first expanding and then receding
as the sublaminates separate, stretch (compress) and slide in the delaminated region. This
process continues until the strain energy is such that eqn (47a) is satisfied, at which point
stable growth occurs, as indicated in Figs 2 and 3, until a critical load is achieved and snap-
through buckling occurs in the delaminated region. Similarly, if growth has not occurred
before the maximum load is achieved, and the load reaches the corresponding maximum,
buckling occurs in the delaminated region. At this point, ¢ - ¢* and growth is governed
by eqn (47b). The behavior of the system is then characterized by Figs 4-7 as discussed
above, with growth beginning when the corresponding growth path is intercepted.

5. CONCLUDING REMARKS

The problem of debonding of a laminated shell subjected to self-equilibrating line
loading has been considered. A self-consistent model has been presented yielding a set of
governing equations for the intact portion of the structure and for the sublaminates in the
delaminated region of the system. Corresponding boundary and matching conditions, along
with transversality conditions defining the variable boundaries of a contact zone and of the
delamination, were obtained. It was seen that growth of the disbond was governed by mode
II fracture for the case of nonvanishing contact zone, and by a combination of mode I and
mode 1II fracture when the region of separation completely envelops the delamination.

A closed form analytical solution was obtained and numerical simulations were per-
formed demonstrating representative behavior. The system was seen to exhibit relatively
complex behavior under the simple loading considered. Characteristics of the system
behavior included minimum delamination sizes below which no contact zone exists, snap-
through buckling in the delaminated region, and critical delamination sizes separating
stable, unstable and catastrophic growth of the disbond. Each of these characteristics was
seen to be strongly influenced by the relative stiffnesses of the inner and outer sublaminates,
as well as on the strength of the bond, and general trends resulting from these influences
were exhibited.
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